
Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
70 

Errors in Java Programmes

4. Errors in Java Programmes

With the best will in the world, errors will occur when developing applications irrespective of the target 
language: Java programmes are no exception. However, object-oriented programming (OOP) languages 
such as Java offer a distinct advantage over non-OOP languages in that the former are able to respond to 
certain error conditions by creating an object to represent the error. This approach leaves the developer 
with the responsibility of processing error objects in order to respond to errors occurring when an 
application is running. 

This chapter explains how errors are handled in Java programmes; it does not include syntax errors. 
Syntax errors are caused by incorrect use of the Java language on the part of the developer; the compiler 
checks for this category of error and notifies the developer accordingly. 

4.1 Categories of Error 

A search of the previous nine chapters reveals the following error messages in the discussion of examples: 

ArrayIndexOutOfBoundsException 

and 

ClassCastException 

These two messages imply that something happened at run-time when the example programmes were 
executed. In fact, both of these error messages imply that the developer has made a logic error. Logic 
errors that occur at run-time are usually reflected in the output from the application. Logic errors are 
eliminated by further testing and debugging of the programme at compile time. 

At compile time, in the first case, the compiler could not be expected to anticipate that an out of bounds 
array index is being processed at runtime. The occurrence of an ArrayIndexOutOfBoundsException should 
be sufficient information for the developer to check the logic of the code that produces such an error.  

At compile time, in the second, case, the developer has not obeyed the rules for casting object references. 
Although, the code has compiled because the compile-time rules have been obeyed, the run-time rules 
have been broken; again, the nature of the error message should be sufficient information for the 
developer to check that the statements that include a cast obey both the compile-time and run-time rules of 
object reference casting as explained in the previous chapter.  

In short, the two errors indicated by the messages  

ArrayIndexOutOfBoundsException 

and 

ClassCastException 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
71 

Errors in Java Programmes

should have been fixed by the developer at compile time; they cannot be recovered from at run-time. 
Given that they were not anticipated by the developer, they are relatively easily eliminated by working 
through and correcting the logic of the code that produced the error messages. Working through the logic 
of source code is known as debugging. Integrated Development Environments (IDEs) usually provide a 
debugging tool that can be used to step through code statement by statement. 

There is, on the other hand, a number of other run-time errors that can occur when a programme executes 
that are outside the control of the programme’s logic. These include, for example, error conditions that are 
reasonably likely to occur in that they have the potential to impair access to data and access to other local 
and networked resources. The kind of error that is reasonably likely to occur at run-time should be 
recoverable so that the programme does not terminate abnormally. 

Anticipating that such errors have the potential to occur does not include expected conditions such as,  
for example, detecting the end of a file that is being read by a method. In this case, the method that reads 
the file should include code that detects the end of the file so that an ‘end of file’ error does not occur at 
run-time. 

The inevitable existence of run-time errors raises an important question: how does the developer 

anticipate run-time error conditions? If the developer takes an exhaustive position and anticipates that all 
error conditions have the potential to occur with all methods, the resulting code is highly likely to be 
cumbersome to write and almost unreadable. On the other hand, if the developer takes an optimistic 
position and doesn’t anticipate many error conditions, the resulting code may not be robust enough when 
the application is released to its users. The answer to the question (posed at the beginning of this 
paragraph) is not a straightforward one in that it is not easy to decide which errors to anticipate and which 
not to anticipate. In practice, the answer lies in arriving at a reasonable practical compromise between the 
two positions. 

4.2 What are Unexpected Error Conditions? 

The two error messages listed in Section 4.1 reveal a clue to how unexpected error conditions are dealt 
with in a Java programme. A cursory examination of the messages 

ArrayIndexOutOfBoundsException

and 

ClassCastException

reveals that the two compound words have something in common: the word ‘Exception’. It is to be hoped 
that the reader immediately recognises that an Exception is a Java class. Therefore an 
ArrayOutOfBoundException is a type of Exception class. This is indeed the case as the following extract 
from the API confirms. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
72 

Errors in Java Programmes

java.lang  

Class ArrayIndexOutOfBoundsException 
java.lang.Object

       java.lang.Throwable

       java.lang.Exception

               java.lang.RuntimeException

                java.lang.IndexOutOfBoundsException

                          java.lang.ArrayIndexOutOfBoundsException

Exception objects (usually shortened to exceptions) that are subclasses of the RunTimeException class, as 
in the case of an ArrayOutOfBoundException, usually arise as a result of logic errors and are the 
responsibility of the developer to eliminate at compile time. This kind of exception is known as an 
unchecked exception.

The discussion of the two error messages 

ArrayIndexOutOfBoundsException

and 

ClassCastException

implies that they are both examples of unchecked exceptions. 

We will turn your CV into 
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://bookboon.com/
http://bookboon.com/count/advert/b6907fa5-6d27-49ae-a477-a01a01116857


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
73 

Errors in Java Programmes

Exceptions that are reasonably recoverable at run-time and that are not the result of logic errors are not 
unchecked exceptions; this type of exception is incorporated into the implementation of methods that give 
rise to them, as shown in the next section. 

4.3 Checked Exceptions 

Exceptions provide a straightforward mechanism to check for errors without cluttering code with 
additional statements such as if .. else constructs and other statements to test the value of fields in order to 
detect when an error condition might arise. The exceptions that a method might produce are explicitly 
included as part of the method’s declaration. This means that exceptions are as important a part of a 
method’s programming interface as are its return type and parameters. The inclusion of exceptions in the 
declaration of a method means that they are made known to the code that invokes the method and, as a 
result, the compiler knows about them. The type of exception that is checked by the compiler is known as 
a checked exception.

When an error occurs when a method is invoked, the exception object is passed to the run-time system; 
this process is known as throwing an exception. The run-time system tries to find some code in the calling 
method that is designed to respond and handle the error. If this handling code cannot be found in the 
calling method, the run-time system works its way through the set of methods that has been called to call 
the method that throws the exception until it finds some handling code. This set of methods is known as 
the call stack. If handling code has not been provided by the developer, the run-time system eventually 
arrives at the end of the method invocation stack to the thread that runs the application’s main method. If 
main does not handle the exception, main’s thread of execution will terminate abnormally. In other words, 
the application will ‘crash’ when main terminates in an abnormal way. (We will examine threads in 
Chapter Four in An Introduction to Java Programming 3: Graphical User Interfaces.)

On the other hand, if handling code has been provided by the developer somewhere in the call stack, the 
exception is said to be caught by the block of code that is the handler. 

It will be instructive, at this point in the discussion of exceptions, for the learner to study an example that 
illustrates how checked exceptions are thrown and caught. 

4.3.1 How is a Checked Exception Handled in a Java Programme?  

The example that follows shows how an exception is thrown and caught in order to illustrate the key 
concepts associated with exception handling in a Java programme. 

The code for a simple exception class follows on the next page.  

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
74 

Errors in Java Programmes

public class MyException extends Exception { 

      // constructor 
public MyException( ) { 

   super( "You are attempting to divide by zero." ); 

      } 

} // end of class definition 

The constructor for MyException passes a String to the superclass Exception; this String is used to 
construct an error message. 

Strictly speaking, an attempt to divide a number by zero throws an instance of an ArithmeticException,
which is type of RunTimeException: i.e. it is an unchecked exception. However making MyException a 
checked exception by inheriting directly from Exception, means that the example can be used to illustrate 
how a checked exception is thrown and caught. 

The class MyObject includes a method that declares that it throws MyException objects: note the use of the 
keyword ‘throws’ in the declaration of quotient. The class definition is next. 

public class MyObject { 

          public double quotient( int num, int den ) throws MyException {         

               if( den == 0 ) 
               { 
                   System.out.println( "quotient has exited and thrown an " + 
                                  "instance of MyException." ); 
                   throw new MyException( );             
               } 
               else 
               { 
                   System.out.println( "quotient has completed." ); 
                   return ( double ) num / den; 
               }   
       
          } // end of quotient
     

public void myMethod( int num, int den ) { 

               try 
               { 
                   double answer = quotient( num, den ); 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
75 

Errors in Java Programmes

                   System.out.println( "The value of num / den = " + answer );                     
               } 
               catch( MyException me ) 
               { 
                   me.printStackTrace( ); 
               } 
               System.out.println( "myMethod has completed." );         

      } // end of myMethod 

} // end of class definition

The method quotient includes an if .. else construct that determines the condition when an instance of 
MyException is thrown. If the denominator (den) is not zero, the method returns the double value of the 
numerator (num) divided by the denominator (den).

The method myMethod invokes the method quotient and checks for the exception using what is known as 
a try … catch construct. The try block includes the call to quotient. If den is not equal to zero, the 
statements of the try block execute and the catch block is skipped and the message "myMethod has 
completed." is output. 

If den is equal to zero when quotient is called by myMethod, the method quotient will stop its execution 
and the remaining statements in the try block are skipped and the catch block is executed. The statement 
in the catch block calls an inherited method of MyException in order to output useful information about 
the error condition. In short, the exception is caught in myMethod when it is thrown by the call to quotient.
The print statements in both methods in MyObject serve to show where processing has reached when an 
exception is thrown. 

In order to illustrate what happens when myMethod is called, a test class is required. The code for the test 
class follows on the next page. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
76 

Errors in Java Programmes

public class TestClassOne { 

          public static void main ( String[ ] args ) { 

               // use EasyInput to input two int values; -99 escapes the loop 
               int den = 0; 
               while( den != -99 ) 
               { // start of loop
                   EasyInput keyboard = new EasyInput( ); 
                   System.out.println( "Entering -99 for the second number " + 
                    "will terminate main." ); 
                   System.out.print( "Enter the first number: "); 
                   int num = keyboard.nextInt( ); 
                   System.out.print( "Enter the second number: "); 
                   den = keyboard.nextInt( ); 
         
                   // test the value of den

                   if( den == -99 ) 
                   { 
                        break; 
                   } 
                   else // carry on

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

Maersk.com/Mitas

�e Graduate Programme  
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in  
the North Sea  

advising and  
helping foremen  

solve problems

I was a

he
s

Real work  
International opportunities 

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili� 
 I joined MITAS because  

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
77 

Errors in Java Programmes

                   { 
                        // instantiate a MyObject object 
                        MyObject mo = new MyObject( ); 
                        mo.myMethod( num, den ); 
                        System.out.println( "main is still running." ); 
                   } // end else
               } // end of loop
               System.out.println( "main has terminated." ); 

          } // end of main

} // end of class definition 

TestClassOne uses an instance of a class called EasyInput (the code for which is not shown); EasyInput

provides a number of methods to capture data entered via a computer’s keyboard. The main method in the 
test class above includes a simple loop and exit strategy. 

Firstly, let us find out what happens when we don’t attempt to divide by zero. The output is as follows and 
is what is expected, given the source code shown above. 

 Entering -99 for the second number will terminate main. 
Enter the first number: 1 
Enter the second number: 2 
quotient has completed. 
The value of num / den = 0.5 
myMethod has completed. 
main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 1 
Enter the second number: -99 
main has terminated. 

Next, let us find out what happens when we attempt to divide by zero. The output is as follows. 

Entering -99 for the second number will terminate main. 
Enter the first number: 1 
Enter the second number: 4 
quotient has completed. 
The value of num / den = 0.25 
myMethod has completed. 
main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 2 
Enter the second number: 0 
quotient has exited and thrown an instance of MyException. 
myMethod has completed. 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
78 

Errors in Java Programmes

main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 

MyException: You are attempting to divide by zero. 
 at MyObject.quotient(MyObject.java:9) 
 at MyObject.myMethod(MyObject.java:23) 
 at TestClassOne.main(TestClassOne.java:27)  

(There are other methods in the call stack that call main that are specific to the IDE [BlueJ] that was used 
to run the example. However, these are omitted for the sake of clarity.) 

The output is what is expected: quotient throws an exception and exits; the exception is caught by the 
catch block of myMethod and outputs the stack trace. However, main is still running and shows that the 
exception has been recovered at run-time. 

Next, let us find out what happens when myMethod doesn’t catch MyException objects but declares that it 
throws them.  

The code for MyObject is now as follows. 

public class MyObject { 

          public double quotient( int num, int den ) throws MyException { 
         
               if( den == 0 ) 
               { 
                   System.out.println( "quotient has exited and thrown an " + 
                    "instance of MyException." ); 
                   throw new MyException( );             
               } 
               else 
               { 
                   System.out.println( "quotient has completed." ); 
                   return ( double ) num / den; 
               } 
         
          } 
     

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
79 

Errors in Java Programmes

          public void myMethod( int num, int den ) throws MyException { 
         
               double answer = quotient( num, den ); 
               System.out.println( "The value of num / den = " + answer );                     
               System.out.println( "myMethod has completed." ); 
         
          } 
     

} // end of class definition

It is now the responsibility of main, as shown by the call stack, to catch MyException objects. The relevant 
section of the amended test class follows on the next page. 

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
80 

Errors in Java Programmes

// test the value of den

     if( den == -99 ) 
     { 
          break; 
     } 
     else // carry on
     { 
          // instantiate a MyObject object

          MyObject mo = new MyObject( ); 
          try 
          { 
               mo.myMethod( num, den ); 
               System.out.println( "main is still running." ); 
          } 
          catch( MyException me ) 
          { 
               me.printStackTrace( ); 
    System.out.println( "main is still running." ); 
          } 

The output is as follows. 

Entering -99 for the second number will terminate main. 
Enter the first number: 12 
Enter the second number: 0 
quotient has exited and thrown an instance of MyException. 
main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 

MyException: You are attempting to divide by zero.  
 at MyObject.quotient(MyObject.java:9) 
 at MyObject.myMethod(MyObject.java:21) 
 at TestClassOne.main(TestClassOne.java:29) 

Again, the output is what is expected. 

Finally, in this section, let us see what happens it main does not catch MyException objects but declares 
that it throws them. The amended declaration for main is as follows: 

public static void main ( String[ ] args ) throws MyException 

The body of main does not attempt to catch MyException objects. 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
81 

Errors in Java Programmes

The output is as follows: 

Entering -99 for the second number will terminate main. 
Enter the first number: 9 
Enter the second number: 0 
quotient has exited and thrown an instance of MyException. 

MyException: You are attempting to divide by zero. 
 at MyObject.quotient(MyObject.java:9) 
 at MyObject.myMethod(MyObject.java:21) 
 at TestClassOne.main(TestClassOne.java:27) 

The IDE used to run the application indicates that main has terminated abnormally – in other words the 
programme has crashed – because main has not caught the exception and has merely declared that it is 
thrown. This illustrates that exceptions must be either caught or declared to be thrown by methods in the 
call stack and that main is the final opportunity to catch them. 

As a general rule, it is good practice to catch an exception when the 
method that throws it is called.  

The example code and output explained in this section shows that the run-time system searches the call 
stack in the reverse order in which methods are called until it finds a catch block that is designed to 
respond to the exception thrown by a method. When a catch block is found, the exception is handed to it 
by the run-time system. If the exception is caught before it reaches main or if main catches it, the 
programme will not terminate abnormally; if main does not handle it but declares that it is thrown, main

will crash. 

Now that we have thoroughly explored an example and shown how a simple exception is thrown and 
caught in different places in the call stack, we are in a position to make some more comments about 
handling exceptions in the sections that follow. 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
82 

Errors in Java Programmes

4.4 try … catch … finally Blocks 

The code and output associated with the examples discussed in the previous section provide practical 
evidence that enables us to bring together a number of points concerning handling exceptions. 

• Developer-written code that might throw an exception is 
enclosed in a try block.  

• Similarly, method invocations that are defined to throw 
exceptions as indicated by the API for a method should be 
enclosed in a try block. 

• A try block is followed by one or more catch blocks.  

• Each catch block specifies the type of exception it catches (i.e. 
handles) and contains a handler for that exception type.  

• After the last catch block, an optional finally block contains 
code that always executes.  

• When an exception occurs, catch blocks are searched in their 
order for the appropriate handler.  

• It is usual to sequence catch blocks from the specific to the 
general, i.e. objects of the Exception class are caught in the 
last catch block, which serves as a catch-all if any specific 
exceptions have not been caught.  

• If an exception is not handled in a try…catch block, it is thrown 
to the next method in the call stack.  

• If the exception is passed to the main method and is not 
handled there, the program terminates abnormally.

When non-memory resources such as files and I/O Streams – see Chapter One in An Introduction to Java 

Programming 3: Graphical User Interfaces - are used in a programme, they must eventually be released 
independently of Garbage Collection (of memory  
resources such as identifiers and object references). The use of the finally block that follows a try … catch

block is a good opportunity to release such resources. The general syntax of a try … catch … finally

construct is as follows.  
try 
{

         // statements that invoke methods that throw Exceptions 
    // statements that acquire resources 
}
catch( AKindOfException ex1 ) 
{

         // exception handling statements for ex1 
}
catch( AnotherKindOfException ex2 ) 
{

         // exception handling statements for ex2 
}

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
83 

Errors in Java Programmes

catch( Exception e ) 
{
    // exception handling statements for e 
}
finally 
{

          // resource-release statements 
}

The code for myMethod in the class definition for MyObject is modified to illustrate the use of a finally

block; it doesn’t release any resources, but the output of the programme shows that it is always executed.  

public void myMethod( int num, int den ) { 

              try 
              { 
                  double answer = quotient( num, den ); 
                  System.out.println( "The value of num / den = " + answer ); 
              } 
              catch( MyException me ) 
              { 
                  me.printStackTrace( ); 
              } 
   catch( Exception e ) 
   { 
                  e.printStackTrace( ); 
              } 
              finally 
              { 
                  System.out.println( "finally block: myMethod has completed." ); 
              } 

} // end of myMethod

The output is shown on the next page.  

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
84 

Errors in Java Programmes

Entering -99 for the second number will terminate main. 
Enter the first number: 1 
Enter the second number: 2 
quotient has completed. 
The value of num / den = 0.5 
finally block: myMethod has completed. 
main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 1 
Enter the second number: 0 
quotient has exited and thrown an instance of MyException. 
finally block: myMethod has completed. 
main is still running. 
Entering -99 for the second number will terminate main. 
Enter the first number: 

MyException: You are attempting to divide by zero. 
 at MyObject.quotient(MyObject.java:9) 
 at MyObject.myMethod(MyObject.java:23) 
 at TestClassOne.main(TestClassOne.java:27) 

4.5 Throwing Exceptions 

The example in Section 4.3.1 shows that an exception is thrown by a method by using the following 
generalised syntax: 

public void aMethod( ) throws AnException { 

  if ( <some condition> )  
  { 
   throw new AnException( ); 
  } 
  else { } 

}

} // end of method implementation 

and is caught by the calling method as shown on the next page. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
85 

Errors in Java Programmes

// a method that calls aMethod

try { 
  objectRef.aMethod( ); 

}
catch ( AnException ae ) { 

// do something about the Exception 
}

The catch block can re-throw the exception to its calling method, as follows: 

// a method that calls aMethod

try { 
  objectRef.aMethod( ); 

}
catch ( AnException ae ) { 

  throw ae; 
}

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
86 

Errors in Java Programmes

Returning to the example, the method myMethod could be re-written as shown next.  

public void myMethod( int num, int den ) throws MyException { 

              try 
              { 
                  double answer = quotient( num, den ); 
                  System.out.println( "The value of num / den = " + answer );                     
              } 
              catch( MyException me ) 
              { 
                  // re-throw object me to the next method in the call stack 

       throw me; 
              } 
              finally 
              { 
                  System.out.println( "finally block: myMethod has completed." ); 
              } 

} // end of myMethod 

In this case, it will be the responsibility of main to catch exceptions of the MyException type.  

A catch block can throw a different type of Exception, as follows.  

// code that calls aMethod

try { 
  objectRef.aMethod( ); 

}
catch ( AnException ae ) { 

  throw new AnotherException( ); 
}

Referring to example again, the method myMethod could be re-written as shown next.  

public void myMethod( int num, int den ) throws SomeOtherException { 

              try 
              { 
                  double answer = quotient( num, den ); 
                  System.out.println( "The value of num / den = " + answer );  
              } 
              catch( MyException me ) 
              { 
                  throw new SomeOtherException( ); 
              } 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
87 

Errors in Java Programmes

              finally 
              { 
                  System.out.println( "finally block: myMethod has completed." ); 
              } 

} // end of myMethod

In this case, it will be the responsibility of main to catch exceptions of the SomeOtherException type. 

4.6 Exceptions in the Themed Application 

The themed application includes a developer-defined exception that indicates when a member of the 
Media Store has exceeded their allowance of DVDs on loan against their virtual DVD membership card. 

The source code for the class definition is shown on the following page.  

Enhance your career opportunities
We offer practical, industry-relevant undergraduate and postgraduate degrees in central London

› Accounting and finance › Global banking and finance
› Business, management and leadership › Luxury brand management
› Oil and gas trade management  › Media communications and marketing

Contact us to arrange a visit
Apply direct for January or September entry

T +44 (0)20 7487 7505 E exrel@regents.ac.uk W regents.ac.uk

http://bookboon.com/
http://bookboon.com/count/advert/10a6ab04-ac0d-4b6b-a275-a2d2009406fa


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
88 

Errors in Java Programmes

/** 
* Class ItemLimitException detects transactions that exceed the limit set for a member’s DVD  
* card.     

  * @author D. M. Etheridge.  
  * @version 1.0, dated 6 December 2008.   
  */

public class ItemLimitException extends Exception { 

      // Declare instance variables. 
      private int overLimit; 

      /** 
       * Constructor for objects of class ItemLimitException.  
       */ 
      public ItemLimitException( String message, int overLimit ) { 

           super( message ); 
           this.overLimit = overLimit; 
         
      } // End of constructor.   
     
   /** 
       * This method overrides getMessage( ).   
       *  
       * @return a String message that includes the value of the overLimit attribute.   
       */ 
  public String getMessage( ) { 

   return super.getMessage( ) + overLimit; 

  } // End of getMessage. 

} // End of class ItemLimitException.  

The takeItemOnLoan method of the DvdMembershipCard class throws this exception, as shown by the 
code that follows on the next page. 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
89 

Errors in Java Programmes

/** 
      * This method takes a DVD on loan.  It overrides the method in the parent class.   
      *  
      * @param catNo  The catalogue number of the DVD taken on loan.   
      */     
     public void takeItemOnLoan( String catNo ) throws ItemLimitException { 
         
          // Find out if the DVD exists before attempting a transaction.   
          // Note: the instance variable dvd and the method findDvd are members of  
          // the same class as this method.   
          dvd = findDvd( catNo ); 
          if ( dvd == null ) 
          { 
               System.out.println( "No such dvd; please try again." ); 
          } 
          else // Carry out the transaction.  
          { 
               if ( noOnLoan + 1 <= maxOnLoan ) 
               { 
                   System.out.println( "You are taking 1 DVD on loan." ); 
                   System.out.println( "This transaction is acceptable and " + 
                              "increases the number\n of DVDs that you have " + 
                              "on loan by 1." ); 
                   noOnLoan = noOnLoan + 1; 
                   dvdsOnLoan[ noOnLoan - 1 ] = dvd; 
                   System.out.println( "You are taking " + dvd.getCatNo( ) + " " +  
                               dvd.getTitle( ) + " on loan." ); 
               } 
               else 
               { 
                   System.out.println( "This transaction is not acceptable " + 
                                "because it exceeds the maximum number\n" + 
                                 "of DVDs that you are permitted to have on loan." ); 
                    throw new ItemLimitException( "This transaction is not “ +    

                     “acceptable because it exceeds the maximum number\n" + 
                                "of DVDs that you are permitted to have on loan by ",  
                                ( maxOnLoan - noOnLoan + 1 ) ); 
               } // end inner else 
          } // end outer else         

} // End of takeItemsOnLoan.  

It is not important that the reader understands all of the code. The important things to notice are that the 
method declaration specifies that the method throws ItemLimitException objects and these are thrown in 
the inner else block. 

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

 
90 

Errors in Java Programmes

Instances of ItemLimitException are caught by one of the buttons of the application’s graphical user 
interface (GUI). We will explore GUIs in a later chapter. 

The simplified code for the method that calls takeItemsOnLoan is as follows: 

// if the button pressed is the ‘Borrow DVD’ button.    
        {
               // Get the film from the list of DVDs available for loan.   
                 // Get the catalogue number of the DVD.   
                 // Use the catalogue number to borrow the film using the member's DVD card.   
                 // takeItemOnLoan throws an exception.   
                 try
                 { 
                     membersCard.takeItemOnLoan( catNo ); 
                 } 
                 catch( ItemLimitException ile ) 
                 { 
                      messagesArea.setText( ile.getMessage( ) ); 
                 }                 
                 
            } // end if 

Error messages are output to a text area component of the user’s GUI. 

 

  

 

                . 

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
91 

Errors in Java Programmes

There in only one exception specified in the API that is thrown by methods in the themed application. An 
IOException is thrown by the readObject method of the ObjectInputStream class and the writeObject

method of the ObjectOutputStream class, as shown by the following extracts from the API. 

readObject
 public final Object readObject() 
                        throws IOException

and  

writeObject 
 public final void writeObject(Object obj) 
                       throws IOException

Therefore when either of these methods is called, the calling method must either catch IOException

objects or declare them to be thrown. The two methods in the MediaStore class of the themed application 
that call readObject and writeObject are shown next. 

/** This method reads the file of members.   */ 
     public void readMembers( ) { 
         
          try { // Start of try block.  
                      // The String is the path to the file.   
               FileInputStream fis = new FileInputStream("C:\\Temp\members.dat"); 
               ObjectInputStream ois = new ObjectInputStream( fis ); 
               // Note the cast in the next statement.   
               members = ( Member [ ] )ois.readObject( ); 
               ois.close( ); 
               fis.close( ); 
          } // End of try block.   
          catch ( IOException e ) { // Start of catch block.   
               System.out.println( "Error: " + e.getMessage( ) ); 
          } // End of catch block.   
         

} // End of readMembers.   
     
     /**  This method writes the array of members to its file.  */ 
     public void writeMembers( ) {         
          try { // Start of try block.  
               FileOutputStream fos = new 

FileOutputStream("C:\\Temp\\members.dat"); 
               ObjectOutputStream oos = new ObjectOutputStream( fos ); 
               oos.writeObject( getMembers( ) ); 
               oos.flush( ); 
               oos.close( ); 
               fos.close( );             
          } // End of try block. 

http://bookboon.com/


Download free eBooks at bookboon.com

Java: Classes in Java Applications

 
92 

Errors in Java Programmes

          catch ( IOException e ) { // Start of catch block.  
               System.out.println( "Error: " + e.getMessage( ) ); 
          } // End of catch block.           

} // End of writeMembers.  

The code from the themed application shown in this section illustrates the flexibility of the Exception

class in that objects of this class are used to catch developer-defined exceptions and those declared in the 
Java API. 

4.7 Summary of Exceptions 

Objects of the Exception class are handled in a Java application when they are declared to be thrown by 
methods of classes documented in the Java API. These checked exceptions respond to error conditions 
outside the control of the developer. In the case of the themed application, IOException objects are caught 
by the method that transfers data out of the application to a file and the method that reads these data back 
in to the application. 

Developer-defined exceptions respond to specific invalid conditions that are a function of the business 
rules associated with an application. In the case of the themed application, a developer-defined exception 
occurs when a member of the Media Store attempts to use their card in a way that is not permitted by the 
business rules of the Media Store. 

The examples discussed in this chapter aim to show that there are advantages to using Exception

objects to represent error conditions compared to the traditional approach to error handling adopted in 
non-OOP languages. 

1. The use of objects to represent error conditions means that 
code to handle - i.e. catch - exceptions is separate from 
application logic.  

2. If there are circumstances where an exception does not need to 
be caught at the point it is thrown, it can be propagated up the 
call stack to reach whichever calling method is chosen to handle 
it.  

3. Given that all exceptions are objects, the class hierarchy of the 
Exception class can be used to put similar exceptions into 
groups.  

The outcome of point 3 is that the class of an exception object indicates the type of exception thrown by a 
method. Instances of the IOException class and its descendants, for example, are a group of related 
exceptions that represent the kinds of error associated with input/output (I/O) to/from a Java application. 
We will find out how to use some of the I/O classes in Chapter One in An Introduction to Java 

Programming 3: Graphical User Interfaces.

The next chapter explores one of the most important concepts associated with Java, namely that of  
the interface.

http://bookboon.com/

